A Fire Severity Mapping System (FSMS) for Real-time Fire Management Applications and Long Term Planning:
Developing a Map of the Landscape Potential for Severe Fire in the Western United States
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OBJECTIVE

« Produce a seamless,wall-to-wall, 30-meter rastergeospatial layer
covering alllands in 11 westem states that:

« builds on MTBS data to make predictions
« depictsthe probability of severe fire foreach 30-mcell
« can be made available for managers and scientists to download

BACKGROUND

« Fire severity mapping tools and technologies are critical for 1)
identifying where and when fires may burn severely, 2) facilitating
enlightened wildfiremanagement, and 3) strategically implementing
costly rehabilitation and restoration efforts (Lachowski et al. 1997;
Eidenshink etal. 2007).

Holden etal. (2009) demonstrated on the Gila National Forest that they

could predict locations of high severity fire with over 80% accuracy,

using satellite-derived fire severity data fromthe Monitoring Trends in
Burn Severity project (MTBS) along with topographic and biophysical
predictorvariables.

As part of the Fire Severity Mapping System project, we are using

similar methods to developa comprehensive, west-wide map of the
landscape potential forsevere fire.

Step 1b: Compile candidate predictor variable data layers

Category Datalayer Description
Climate’ MAT Mean annual temperature
MAP Mean annual precipitation
MonthT2 Average monthly mean temperature
Monthhe Average monthly min temperature
MonthX2 Average monthly max temperature
MonthP2 Average monthly total precipitation
MICM Mean temperature in coldest month
MN Mn temperature in coldest month
MIWM Mean temperature in warmest month
MVIAX Mn temperature in warmest month
TDIFF Summer-winter temperature_differential
DD5 Number degree-days >5° G
DDO Number degree-days <0° G
FFP Length of frostree period
AM Annual moisture index [DDS/MAP]
PRATIO Ratio of summer to total [GSP/MAP]
Topography DEM Elevation (USGS National Elevation Dataset)
CAT Slope cosine aspect (Stage 1976)
- Slope/aspect SAT Slope sine aspect (Stage 1976)
transformations TRASP Solar-radiation aspect index (Roberts and Cooper 1989)
HLI Heat Load Index (McCune and Keon 2002)
HSP Hierarchical Slope Position (Murphy et al. in press)
+ Slope position and o
s TPI Topographic position index (Weiss 2001)
LFI Landform Index_(VoNab 1993)
« Topographic DISS Martonne’s modified dissection coefficient (Evans 1972)
complexity ERR Elevation Relief Ratio (Pike and Wilson 1971)
« Contributing area CTI Compound Topographic Index (Moore et al. 1993)
o SlTerm soL Solarinsolation (Kumar et al. 1997)
PRR Potential relative radiation (Pierce et al. 2005)

1 Climate model = ANUSPLIN (Hutchinson 2000); Climate data source = A) climate normals 1961-1990
(Rehfeldt 2006), or B) climate normals 1971-2000 (NOAA-NCDC 2008, USDA FS-FHTET 2009)

2 Variable is created for each month (e.g., janT, febT, etc.); multi-month groupings are also possible
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METHODS

Step 1a: Acquire and process burn severity data

« Acquire MTBS burn severity data (1984-2006) forthe western U.S.

« Use Relative differenced Normalized Burn Ratio (RINBR; Millerand Thode 2007)

« Foreachfire, use fuzzy C-means clustering (Holden and Evans, accepted) to create 4 classes
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Step 2: Develop statistical predictive models
Within distinct ecological regions across the West:
« Generate alarge random sample of pixels
(10,000—-100,000+)
« Extractvaluesforresponse (bum severity)
and predictor variables at each sample
location
 Usethe Random Forests machine leaming
algorithm(Breiman 2001) to developa
predictive model of highseverity potential
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Step 3: Apply models spatially
« Produce araster prediction surface foreach region
« Mergerastersinto aseamlesslayer forthe West

Severe Fire
Probability

P High : 0.97 around the

high severity fi
West: (a) Cdlifornia chaparral, (b) big sagebrush steppe, (c)
piny on-juniper woodand, (d) ponderosa pine forest, ()
southwest mixed-conifer/aspenforest, (f) northern Rockies
mixed-conifer forest.

Low : 0.00

Step 4: Accuracy Assessment
« Determine error rates and misclassifications using
independent field data:
= Collect field data on selected fires from 2008,
2009, and 2010
=Compare predicted areas of high severity with field
observations
=Produce contingency tables, calculate accuracy
statistics
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figure adapted from Holden et . 2009

DELIVERABLES

December 2010

Spatial database of climatic and topographic

predictorvariables

December 2010

Publication focusing on compilation of spatial

database and methods for statistical modeling

December 2011

Final west-wide map of landscape potential for

severe fire (“Landscape PSF Map”)

June 2012

Summary journa publication

EXPECTED BENEFITS

Values to Science
Increased understanding of:

* “pbottom-up”landscape-level controls on fire severity
« relative contribution of climate and topography to burn severity
« conditions where fires are more likely to burn severely

Values to Management

« Provides an “on-the-shelf”resource formanagersto use when
evaluating the potential risks and effects associated withnew fire events

« Integrates with other components ofthe Fire Severity Mapping System
project (e.g., FOFEM simulation modeling) and existing severity
products (e.g., BARC, MTBS) to create a suite of spatial fire severity

dataproducts

+ RAVAR and WFDSS are immediate users of these products

FUTURE CHALLENGES

Topography and climate will be the primary predictors forthe Landscape
PSFMap. Ifwe can reliablyincorporate fuels data into the modeling, we
may be able to produce a “Fuels PSFMap” and possibly an “Integrated
PSFMap” that combines predictions based on climate, topography, and

fuels.
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